python识别验证码的思路及解决方案

avatar 2020年11月28日10:17:23 评论 205

1、介绍

在爬虫中经常会遇到验证码识别的问题,现在的验证码大多分计算验证码、滑块验证码、识图验证码、语音验证码等四种。本文就是识图验证码,识别的是简单的验证码,要想让识别率更高,识别的更加准确就需要花很多的精力去训练自己的字体库。

识别验证码通常是这几个步骤:

(1)灰度处理

(2)二值化

(3)去除边框(如果有的话)

(4)降噪

(5)切割字符或者倾斜度矫正

(6)训练字体库

(7)识别

这6个步骤中前三个步骤是基本的,4或者5可根据实际情况选择是否需要。

经常用的库有pytesseract(识别库)、OpenCV(高级图像处理库)、imagehash(图片哈希值库)、numpy(开源的、高性能的Python数值计算库)、PIL的 Image,ImageDraw,ImageFile等。

2、实例

以某网站登录的验证码识别为例:具体过程和上述的步骤稍有不同。

1a6551d95743247d0badb22ee37b970.png

首先分析一下,验证码是由4个从0到9等10个数字组成的,那么从0到9这个10个数字没有数字只有第一、第二、第三和第四等4个位置。那么计算下来共有40个数字位置,如下:

ee2d66cd43617fa62482be6df4e66d4.png

那么接下来就要对验证码图片进行降噪、分隔得到上面的图片。以这40个图片集作为基础。

对要验证的验证码图片进行降噪、分隔后获取四个类似上面的数字图片、通过和上面的比对就可以知道该验证码是什么了。

以上面验证码2837为例:

1、图片降噪

3e8a0c141f9a901f2e216f04c708be1.png

2、图片分隔

4a9341d15023d1d48c71d5f33032221.png

3、图片比对

通过比验证码降噪、分隔后的四个数字图片,和上面的40个数字图片进行哈希值比对,设置一个误差,max_dif:允许最大hash差值,越小越精确,最小为0。

05e30d094645a682731b5909eed5b96.png

这样四个数字图片通过比较后获取对应是数字,连起来,就是要获取的验证码。

完整代码如下:

#coding=utf-8
import os
import re
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import time
from selenium.webdriver.common.action_chains import ActionChains
import collections
import mongoDbBase
import numpy
import imagehash
from PIL import Image,ImageFile
import datetime
class finalNews_IE:
    def __init__(self,strdate,logonUrl,firstUrl,keyword_list,exportPath,codepath,codedir):
        self.iniDriver()
        self.db = mongoDbBase.mongoDbBase()
        self.date = strdate
        self.firstUrl = firstUrl
        self.logonUrl = logonUrl
        self.keyword_list = keyword_list
        self.exportPath = exportPath
        self.codedir = codedir
        self.hash_code_dict ={}
        for f in range(0,10):
            for l in range(1,5):
                file = os.path.join(codedir, "codeLibrarycode" +  str(f) + '_'+str(l) + ".png")
                # print(file)
                hash = self.get_ImageHash(file)
                self.hash_code_dict[hash]= str(f)
    def iniDriver(self):
        # 通过配置文件获取IEDriverServer.exe路径
        IEDriverServer = "C:Program FilesInternet ExplorerIEDriverServer.exe"
        os.environ["webdriver.ie.driver"] = IEDriverServer
        self.driver = webdriver.Ie(IEDriverServer)
    def WriteData(self, message, fileName):
        fileName = os.path.join(os.getcwd(), self.exportPath + '/' + fileName)
        with open(fileName, 'a') as f:
            f.write(message)
    # 获取图片文件的hash值
    def get_ImageHash(self,imagefile):
        hash = None
        if os.path.exists(imagefile):
            with open(imagefile, 'rb') as fp:
                hash = imagehash.average_hash(Image.open(fp))
        return hash
    # 点降噪
    def clearNoise(self, imageFile, x=0, y=0):
        if os.path.exists(imageFile):
            image = Image.open(imageFile)
            image = image.convert('L')
            image = numpy.asarray(image)
            image = (image > 135) * 255
            image = Image.fromarray(image).convert('RGB')
            # save_name = "D:workpython36_crawlVeriycodemode_5590.png"
            # image.save(save_name)
            image.save(imageFile)
            return image
    #切割验证码
    # rownum:切割行数;colnum:切割列数;dstpath:图片文件路径;img_name:要切割的图片文件
    def splitimage(self, imagePath,imageFile,rownum=1, colnum=4):
        img = Image.open(imageFile)
        w, h = img.size
        if rownum 

实例补充:

文章来源于互联网:python识别验证码的思路及解决方案

avatar

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: