爬虫Python验证码识别入门

avatar 2021年10月14日10:15:04 评论 18

爬虫Python验证码识别

前言:

二值化、普通降噪、8邻域降噪
tesseract、tesserocr、PIL
参考文献--代码地址:https://github.com/liguobao/python-verify-code-ocr

 1、批量下载验证码图片

import shutil
import requests
from loguru import logger

for i in range(100):
    url = 'http://xxxx/create/validate/image'
    response = requests.get(url, stream=True)
    with open(f'./imgs/{i}.png', 'wb') as out_file:
        response.raw.decode_content = True
        shutil.copyfileobj(response.raw, out_file)
        logger.info(f"download {i}.png successfully.")
    del response
 
 

2、识别代码看看效果

from PIL import Image
import tesserocr
img = Image.open("./imgs/98.png")
img.show()
img_l = img.convert("L")# 灰阶图
img_l.show()
verify_code1 = tesserocr.image_to_text(img)
verify_code2 = tesserocr.image_to_text(img_l)
print(f"verify_code1:{verify_code1}")
print(f"verify_code2:{verify_code2}")
 

毫无疑问,无论是原图还是灰阶图,一无所有。

 3、折腾降噪、去干扰

Python图片验证码降噪 - 8邻域降噪

from PIL import Image
# https://www.cnblogs.com/jhao/p/10345853.html Python图片验证码降噪 ― 8邻域降噪

 
def noise_remove_pil(image_name, k):
    """
    8邻域降噪
    Args:
        image_name: 图片文件命名
        k: 判断阈值
    Returns:
    """

    def calculate_noise_count(img_obj, w, h):
        """
        计算邻域非白色的个数
        Args:
            img_obj: img obj
            w: width
            h: height
        Returns:
            count (int)
        """
        count = 0
        width, height = img_obj.size
        for _w_ in [w - 1, w, w + 1]:
            for _h_ in [h - 1, h, h + 1]:
                if _w_ > width - 1:
                    continue
                if _h_ > height - 1:
                    continue
                if _w_ == w and _h_ == h:
                    continue
                if img_obj.getpixel((_w_, _h_)) 

看下图效果:

这样差不多了,不过还可以提升

提升新思路:

这边的干扰线是从某个点发出来的红色线条,

其实我只需要把红色的像素点都干掉,这个线条也会被去掉。

from PIL import Image
import tesserocr
img = Image.open("./imgs/98.png")
img.show()

# 尝试去掉红像素点
w, h = img.size
for _w in range(w):
    for _h in range(h):
        o_pixel = img.getpixel((_w, _h))
        if o_pixel == (255, 0, 0):
            img.putpixel((_w, _h), (255, 255, 255))
img.show()

img_l = img.convert("L")
# img_l.show()
verify_code1 = tesserocr.image_to_text(img)
verify_code2 = tesserocr.image_to_text(img_l)
print(f"verify_code1:{verify_code1}")
print(f"verify_code2:{verify_code2}")

看起来OK,上面还有零星的蓝色像素掉,也可以用同样的方法一起去掉。

甚至OCR都直接出效果了
好了,完结撒花。
不过,后面发现,有些红色线段和蓝色点,是和验证码重合的。
这个时候,如果直接填成白色,就容易把字母切开,导致识别效果变差。
当前点是红色或者蓝色,判断周围点是不是超过两个像素点是黑色。
是,填充为黑色。
否,填充成白色。

最终完整代码:

文章来源于互联网:爬虫Python验证码识别入门

avatar

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: