OpenCV特征提取与检测之Harris角点检测

avatar 2021年11月2日10:16:58 评论 35

前言

这篇博客将了解什么是特征,角点,哈里斯角点检测(Harris Corner Detection)的概念。并使用cv2.cornerHarris(),cv2.cornerSubPix()实现哈里斯角点检测;

1. 效果图

原图 VS Harris角点检测效果图如下:

原图 VS Harris角点检测效果图如下:

惊细角点效果图如下:Harris角点用红色像素标记,精细角点用绿色像素标记

惊细角点效果图如下:Harris角点用红色像素标记,精细角点用绿色像素标记

2. 原理

图像最重要的一个要素是特征,一旦有了特征及其描述,就可以在所有图像中找到相同的特征,并将它们对齐、缝合或执行任何您想要的操作。

特征可分为角、边、平面,OpenCV提供了许多不同的算法来查找特征、描述特征、匹配特征等。

角点是图像中各个方向上强度变化较大的区域。

Harris角点检测的结果是一个灰度图像与这些分数。对一个合适的图像进行阈值化可以得到图像中的角点。

dst = cv2.cornerHarris(gray, 2, 3, 0.04)

img: 输入图像,灰度图像,float32
blockSize: 用于角点检测的邻域的大小
ksize: Sobel导数的孔径参数
k: 方程中的k-Harris检测器自由参数
dst:返回值,灰度图像

corners = cv2.cornerSubPix(gray, np.float32(centroids), (5, 5), (-1, -1), criteria)
具有亚像素精度的角点:有时可能需要以最大的精度找到角点。OpenCV附带了一个函数cv2.cornerSubPix(),它可以进一步细化以亚像素精度检测到的角点。

使用 Harris 角点检测器检查逆矩阵的相似性。它表示角点是更好的跟踪点。

3. 源码

3.1 Harris角点检测

# Harris角点检测

import cv2
import numpy as np

img = cv2.imread('images/polygon.jpg')
img = cv2.imread('images/opencv_logo.jpg')
print(img.shape)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imshow("origin", img)
cv2.waitKey(0)

gray = np.float32(gray)

# res = cv2.cornerHarris(gray, 2, 3, 0.04)
# - img: 输入图像,灰度图像,float32
# - blockSize: 用于角点检测的邻域的大小
# - ksize: Sobel导数的孔径参数
# - k: 方程中的k-Harris检测器自由参数
# - res:返回值,灰度图像
res = cv2.cornerHarris(gray, 2, 3, 0.04)

# 扩大标记的内容
res = cv2.dilate(res, None)

# 最佳阈值因图而异
img[res > 0.01 * res.max()] = [0, 0, 255]

cv2.imshow('Harris res', img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

3.2 精细角点检测

参考 https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html#harris-corners

总结

文章来源于互联网:OpenCV特征提取与检测之Harris角点检测

avatar

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: