python方差检验的含义及用法

avatar 2021年12月14日10:18:05 评论 64

说明

1、方差检验是用来比较两个或多个变量数据的样本,以确定它们之间的差异是简单随机的,或者是由于过程之间的显著统计差异造成的。

2、自变量X是一种离散数据,自变量Y是一种连续数据(x可以是多种类型),如果数据正态分布,方差应齐次。

实例

import pandas as pd
import numpy as np
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm
data = pd.DataFrame([[1, 1, 32],
[1, 2, 35],
[1, 3, 35.5],
[1, 4, 38.5],
[2, 1, 33.5],
[2, 2, 36.5],
[2, 3, 38],
[2, 4, 39.5],
[3, 1, 36],
[3, 2, 37.5],
[3, 3, 39.5],
[3, 4, 43]],
columns=['x1', 'x2', 'y'])
# 多因素无重复试验,不计算交互作用的影响
model = ols('y~C(x1) + C(x2)', data=data[['x1', 'x2', 'y']]).fit()
anovat = anova_lm(model)
anovat

知识点补充:

方差分析可以用来推断一个或多个因素在其状态变化时,其因素水平或交互作用是否会对实验指标产生显著影响。主要分为单因素方差分析、多因素无重复方差分析和多因素重复方差分析。

做数理统计课后题,发现方差分析计算比较麻烦,想用Python调包实现。但是发现大多教程对参数的讲解不是很清楚,在此做记录。

主要用到的库是pandas和statsmodels。简要流程是,先用pandas库的DataFrame数据结构来构造输入数据格式。然后用statsmodels库中的ols函数得到最小二乘线性回归模型。最后用statsmodels库中的anova_lm函数进行方差分析。

文章来源于互联网:python方差检验的含义及用法

历史上的今天
12月
14
avatar

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: